372 research outputs found

    Proteasome inhibition alleviates prolonged moderate compression-induced muscle pathology

    Get PDF
    Author name used in this publication: Bee T TengAuthor name used in this publication: Eric W Tam2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Gene network exploration of crosstalk between apoptosis and autophagy in chronic myelogenous leukemia

    Get PDF
    2014-2015 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Neurogenesis Drives Stimulus Decorrelation in a Model of the Olfactory Bulb

    Get PDF
    The reshaping and decorrelation of similar activity patterns by neuronal networks can enhance their discriminability, storage, and retrieval. How can such networks learn to decorrelate new complex patterns, as they arise in the olfactory system? Using a computational network model for the dominant neural populations of the olfactory bulb we show that fundamental aspects of the adult neurogenesis observed in the olfactory bulb -- the persistent addition of new inhibitory granule cells to the network, their activity-dependent survival, and the reciprocal character of their synapses with the principal mitral cells -- are sufficient to restructure the network and to alter its encoding of odor stimuli adaptively so as to reduce the correlations between the bulbar representations of similar stimuli. The decorrelation is quite robust with respect to various types of perturbations of the reciprocity. The model parsimoniously captures the experimentally observed role of neurogenesis in perceptual learning and the enhanced response of young granule cells to novel stimuli. Moreover, it makes specific predictions for the type of odor enrichment that should be effective in enhancing the ability of animals to discriminate similar odor mixtures

    Electrical Stimulation Influences Satellite Cell Proliferation and Apoptosis in Unloading-Induced Muscle Atrophy in Mice

    Get PDF
    Muscle atrophy caused by disuse is accompanied by adverse physiological and functional consequences. Satellite cells are the primary source of skeletal muscle regeneration. Satellite cell dysfunction, as a result of impaired proliferative potential and/or increased apoptosis, is thought to be one of the causes contributing to the decreased muscle regeneration capacity in atrophy. We have previously shown that electrical stimulation improved satellite cell dysfunction. Here we test whether electrical stimulation can also enhance satellite cell proliferative potential as well as suppress apoptotic cell death in disuse-induced muscle atrophy. Eight-week-old male BALB/c mice were subjected to a 14-day hindlimb unloading procedure. During that period, one limb (HU-ES) received electrical stimulation (frequency: 20 Hz; duration: 3 h, twice daily) while the contralateral limb served as control (HU). Immunohistochemistry and western blotting techniques were used to characterize specific proteins in cell proliferation and apoptosis. The HU-ES soleus muscles showed significant improvement in muscle mass, cross-sectional area, and peak tetanic force relative to the HU limb (p<0.05). The satellite cell proliferative activity as detected within the BrdU+/Pax7+ population was significantly higher (p<0.05). The apoptotic myonuclei (detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) and the apoptotic satellite cells (detected by cleaved Poly [ADP-ribose] polymerase co-labeled with Pax7) were reduced (p<0.05) in the HU-ES limb. Furthermore the apoptosis-inducing factor and cleaved caspase-3 were down-regulated while the anti-apoptotic Bcl-2 protein was up-regulated (p<0.05), in the HU-ES limb. These findings suggest that the electrical stimulation paradigm provides an effective stimulus to rescue the loss of myonuclei and satellite cells in disuse muscle atrophy, thus maintaining a viable satellite cell pool for subsequent muscle regeneration. Optimization of stimulation parameters may enhance the outcome of the intervention

    Comparative antimicrobial susceptibility of aerobic and facultative bacteria from community-acquired bacteremia to ertapenem in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ertapenem is a once-a-day carbapenem and has excellent activity against many gram-positive and gram-negative aerobic, facultative, and anaerobic bacteria. The susceptibility of isolates of community-acquired bacteremia to ertapenem has not been reported yet. The present study assesses the in vitro activity of ertapenem against aerobic and facultative bacterial pathogens isolated from patients with community-acquired bacteremia by determining and comparing the MICs of cefepime, cefoxitin, ceftazidime, ceftriaxone, ertapenem, piperacillin, piperacillin-tazobactam, ciprofloxacin, amikacin and gentamicin. The prevalence of extended broad spectrum β-lactamases (ESBL) producing strains of community-acquired bacteremia and their susceptibility to these antibiotics are investigated.</p> <p>Methods</p> <p>Aerobic and facultative bacteria isolated from blood obtained from hospitalized patients with community-acquired bacteremia within 48 hours of admission between August 1, 2004 and September 30, 2004 in Chang Gung Memorial Hospital at Keelung, Taiwan, were identified using standard procedures. Antimicrobial susceptibility was evaluated by Etest according to the standard guidelines provided by the manufacturer and document M100-S16 Performance Standards of the Clinical Laboratory of Standard Institute. Antimicrobial agents including cefepime, cefoxitin, ceftazidime, ceftriaxone, ertapenem, piperacillin, piperacillin-tazobactam, ciprofloxacin, amikacin and gentamicin were used against the bacterial isolates to test their MICs as determined by Etest. For <it>Staphylococcus aureus </it>isolates, MICs of oxacillin were also tested by Etest to differentiate oxacillin-sensitive and oxacillin-resistant <it>S. aureus</it>.</p> <p>Results</p> <p>Ertapenem was highly active in vitro against many aerobic and facultative bacterial pathogens commonly recovered from patients with community-acquired bacteremia (128/159, 80.5 %). Ertapenem had more potent activity than ceftriaxone, piperacillin-tazobactam, or ciprofloxacin against oxacillin-susceptible <it>S</it>. <it>aureus </it>(17/17, 100%)and was more active than any of these agents against <it>enterobacteriaceae </it>(82/82, 100%).</p> <p>Conclusion</p> <p>Based on the microbiology pattern of community-acquired bacteremia, initial empiric treatment that requires coverage of a broad spectrum of both gram-negative and gram-positive aerobic bacteria, such as ertapenem, may be justified in moderately severe cases of community-acquired bacteremia in non-immunocompromised hosts.</p

    Dual task interference during gait in patients with unilateral vestibular disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vestibular patients show slower and unsteady gait; they have also been shown to need greater cognitive resources when carrying out balance and cognitive dual tasks (DT). This study investigated DT interference during gait in a middle-aged group of subjects with dizziness and unsteadiness after unilateral vestibular neuronitis and in a healthy control group.</p> <p>Methods</p> <p>Fourteen individuals with subacute unilateral vestibular impairment after neuronitis and seventeen healthy subjects performed gait and cognitive tasks in single and DT conditions. A statistical gait analysis system was used and spatio-temporal parameters were considered. The cognitive task, consisting of backward counting by three, was tape recorded and the number of right figures was then calculated.</p> <p>Results</p> <p>Both patients and controls showed a more conservative gait during DT and between groups significant differences were not found. A significant decrease in cognitive performance during DT was found only in the vestibular group.</p> <p>Conclusions</p> <p>Results suggest that less attentional resources are available during gait in vestibular patients compared to controls, and that a priority is given in keeping up the motor task to the detriment of a decrease of the cognitive performance during DT.</p

    The effects of low and high glycemic index foods on exercise performance and beta-endorphin responses

    Get PDF
    Τhe aim of this study was to examine the effects of the consumption of foods of various glycemic index values on performance, β-endorphin levels and substrate (fat and carbohydrate) utilization during prolonged exercise. Eight untrained healthy males underwent, in a randomized counterbalanced design, three experimental conditions under which they received carbohydrates (1.5 gr. kg-1 of body weight) of low glycemic index (LGI), high glycemic index (HGI) or placebo. Food was administered 30 min prior to exercise. Subjects cycled for 60 min at an intensity corresponding to 65% of VO2max, which was increased to 90% of VO2max, then they cycled until exhaustion and the time to exhaustion was recorded. Blood was collected prior to food consumption, 15 min prior to exercise, 0, 20, 40, and 60 min into exercise as well as at exhaustion. Blood was analyzed for β-endorphin, glucose, insulin, and lactate. The mean time to exhaustion did not differ between the three conditions (LGI = 3.2 ± 0.9 min; HGI = 2.9 ± 0.9 min; placebo = 2.7 ± 0.7 min). There was a significant interaction in glucose and insulin response (P < 0.05) with HGI exhibiting higher values before exercise. β-endorphin increased significantly (P < 0.05) at the end of exercise without, however, a significant interaction between the three conditions. Rate of perceived exertion, heart rate, ventilation, lactate, respiratory quotient and substrate oxidation rate did not differ between the three conditions. The present study indicates that ingestion of foods of different glycemic index 30 min prior to one hour cycling exercise does not result in significant changes in exercise performance, β-endorphin levels as well as carbohydrate and fat oxidation during exercise
    corecore